3,607 research outputs found

    Longitudinal Hadronic Shower Development in a Combined Calorimeter

    Get PDF
    This work is devoted to the experimental study of the longitudinal hadronic shower development in the ATLAS barrel combined prototype calorimeter consisting of the lead-liquid argon electromagnetic part and the iron-scintillator hadronic part. The results have been obtained on the basis of the 1996 combined test beam data which have been taken on the H8 beam of the CERN SPS, with the pion beams of 10, 20, 40, 50, 80, 100, 150 and 300 GeV/c. The degree of description of generally accepted Bock parameterization of the longitudinal shower development has been investigated. It is shown that this parameterization does not give satisfactory description for this combined calorimeter. Some modification of this parameterization, in which the e/h ratios of the compartments of the combined calorimeter are used, is suggested and compared with the experimental data. The agreement between such parameterization and the experimental data is demonstrated.Comment: Latex, 21 pages, 10 figure

    Non-compensation of an Electromagnetic Compartment of a Combined Calorimeter

    Get PDF
    The method of extraction of the e/he/h ratio, the degree of non-compensation, of the electromagnetic compartment of the combined calorimeter is suggested. The e/he/h ratio of 1.74±0.041.74\pm0.04 has been determined on the basis of the 1996 combined calorimeter test beam data. This value agrees with the prediction that e/h>1.7e/h > 1.7 for this electromagnetic calorimeter.Comment: LATEX, 17 pages, 7 figure

    Short-Baseline Active-Sterile Neutrino Oscillations?

    Get PDF
    We suggest the possibility that the anomalies observed in the LSND experiment and the Gallium radioactive source experiments may be due to neutrino oscillations generated by a large squared-mass difference of about 20 - 30 eV^2. We consider the simplest 3+1 four-neutrino scheme that can accommodate also the observed solar and atmospheric neutrino oscillations. We show that, in this framework, the disappearance of nu_e and nu_mu in short-baseline neutrino oscillation experiments is mainly due to active-sterile transitions. The implications of the first MiniBooNE results, appeared after the completion of this paper, are discussed in an addendum.Comment: 12 pages. The implications of the first MiniBooNE results are discussed in an addendu

    Enhancement of superconductivity in NbN nanowires by negative electron-beam lithography with positive resist

    Full text link
    We performed comparative experimental investigation of superconducting NbN nanowires which were prepared by means of positive-and negative electron-beam lithography with the same positive tone Poly-methyl-methacrylate (PMMA) resist. We show that nanowires with a thickness 4.9 nm and widths less than 100 nm demonstrate at 4.2 K higher critical temperature and higher density of critical and retrapping currents when they are prepared by negative lithography. Also the ratio of the experimental critical-current to the depairing critical current is larger for nanowires prepared by negative lithography. We associate the observed enhancement of superconducting properties with the difference in the degree of damage that nanowire edges sustain in the lithographic process. A whole range of advantages which is offered by the negative lithography with positive PMMA resist ensures high potential of this technology for improving performance metrics of superconducting nanowire singe-photon detectors

    On q-tensor products of Cuntz algebras

    Get PDF
    We consider the C∗-algebra Eqn, m, which is a q-twist of two Cuntz-Toeplitz algebras. For the case |q| < 1, we give an explicit formula which untwists the q-deformation showing that the isomorphism class of Eqn, mdoes not depend on q. For the case |q| = 1, we give an explicit description of all ideals in Eqn, m. In particular, we show that Eqn, mcontains a unique largest ideal Mq. We identify Eqn, m/Mq with the Rieffel deformation of On ⊗Om and use a K-theoretical argument to show that the isomorphism class does not depend on q. The latter result holds true in a more general setting of multiparameter deformations

    Towards single-electron metrology

    Full text link
    We review the status of the understanding of single-electron transport (SET) devices with respect to their applicability in metrology. Their envisioned role as the basis of a high-precision electrical standard is outlined and is discussed in the context of other standards. The operation principles of single electron transistors, turnstiles and pumps are explained and the fundamental limits of these devices are discussed in detail. We describe the various physical mechanisms that influence the device uncertainty and review the analytical and numerical methods needed to calculate the intrinsic uncertainty and to optimise the fabrication and operation parameters. Recent experimental results are evaluated and compared with theoretical predictions. Although there are discrepancies between theory and experiments, the intrinsic uncertainty is already small enough to start preparing for the first SET-based metrological applications.Comment: 39 pages, 14 figures. Review paper to be published in International Journal of Modern Physics

    Light Lepton Number Violating Sneutrinos and the Baryon Number of the Universe

    Get PDF
    Recent results of neutrino oscillation experiments point to a nonvanishing neutrino mass. Neutrino mass models favour Majorana-type neutrinos. In such circumstances it is natural that the supersymmetric counterpart of the neutrino, the sneutrino, bears also lepton number violating properties. On the other hand, the fact that the universe exhibits an asymmetry in the baryon and antibaryon numbers poses constraints on the extent of lepton number violation in the light sneutrino sector if the electroweak phase transition is second or weak first order. From the requirement that the Baryon Asymmetry of the Universe should not be washed out by sneutrino induced lepton number violating interactions and sphalerons below the critical temperature of the electroweak phase transition we find that the mass splitting of the light sneutrino mass states is compatible with the sneutrino Cold Dark Matter hypothesis only for heavy gauginos and opposite sign gaugino mass parameters.Comment: 13 pages, 4 figure
    • 

    corecore